Colección Digital Complutense


MATERIA PRINCIPAL


RESULTADO


Ordenar:

6 registros encontrados (0.00 seg).
  • Ultrametrics and infinite dimensional whitehead theorems in shape theory
    OAI: open archives initiativeTipo de documento: artículoColección E-prints Colección: Archivo institucional e-prints complutense
    • Título de publicación: Manuscripta mathematica
    • Autor: Alonso Mor髇, Manuel;Romero Ruiz del Portal, Francisco
    • Resumen: We apply a Cantor completion process to construct a complete, non-Archimedean metric on the set of shape morphisms between pointed compacta. In the case of shape groups we obtain a canonical norm producing a complete, both left and right invariant ultrametric. On the other hand, we give a new characterization of movability and we use these spaces of shape morphisms and
    •  
    • uniformly continuous maps between them, to prove an infinite-dimensional theorem from which we can show, in a short and elementary way, some known Whitehead type theorems in shape theory.
    • Palabras clave: Pointed shape theory; Whitehead theorem; shape morphism; Cantor completion process; invariant ultrametric; shape theory
    • Materia: Matem醫icas
    • Identificador OAI: oai:www.ucm.es:15632
    • Tipo: Art韈ulo
    • Editorial: Springer
    • Departamento: Fac. de CC. Matem醫icas - Depto. de Geometr韆 y Topolog韆
    • ISSN: 0025-2611
    • CDU: 515.143:515.124


    [Recurso visitado 2 veces]
    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter


  • On o-minimal homotopy groups
    OAI: open archives initiativeTipo de documento: artículoColección E-prints Colección: Archivo institucional e-prints complutense
    • Título de publicación: Quarterly Journal of Mathematics
    • Autor: Baro Gonz醠ez, El韆s;Otero, Margarita
    • Resumen: We work over an o-minimal expansion of a real closed field. The o-minimal homotopy groups of a definable set are defined naturally using definable continuous maps. We prove that any two semialgebraic maps which are definably homotopic are also semialgebraically homotopic. This result together with known results on semialgebraic homotopy allows us to develop an o-minimal homotopy
    •  
    • theory. In particular, we obtain o-minimal versions of the Hurewicz theorems and the Whitehead theorem.
    • Palabras clave: O-minimal homotopy groups
    • Materia: Matem醫icas
    • Identificador OAI: oai:www.ucm.es:14480
    • Tipo: Art韈ulo
    • Editorial: Oxford University Press
    • Departamento: Fac. de CC. Matem醫icas - Depto. de 羖gebra
    • ISSN: 0033-5606
    • CDU: 512


    [Recurso visitado 6 veces]
    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter


  • Plat髇, Ficino, Aldana
    OAI: open archives initiativeTipo de documento: artículoColección Revistas UCM Colección: Portal de revistas científicas complutenses

    [Recurso visitado 7 veces]

    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter


  • Locally definable homotopy
    OAI: open archives initiativeTipo de documento: artículoColección E-prints Colección: Archivo institucional e-prints complutense
    • Título de publicación: Annals of Pure and Applied Logic
    • Autor: Baro Gonz醠ez, El韆s;Otero, Margarita
    • Resumen: In [E. Baro, M. Otero, On o-minimal homotopy, Quart. J. Math. (2009) 15pp, in press (doi:10.1093/qmath/hap011)] o-minimal homotopy was developed for the definable category, proving o-minimal versions of the Hurewicz theorems and the Whitehead theorem. Here, we extend these results to the category of locally definable spaces, for which we introduce homology and homotopy functors.
    •  
    • We also study the concept of connectedness in V-definable groups - which are examples of locally definable spaces. We show that the various concepts of connectedness associated to these groups, which have appeared in the literature, are non-equivalent.
    • Palabras clave: O-minimality; Locally definable space; Locally definable group; Connectedness; O-minimal homotopy; Homotopy functor; Homology functor
    • Materia: Matem醫icas
    • Identificador OAI: oai:www.ucm.es:14472
    • Tipo: Art韈ulo
    • Editorial: Elsevier
    • Departamento: Fac. de CC. Matem醫icas - Depto. de 羖gebra
    • ISSN: 0168-0072
    • CDU: 510.6:510.67:515.142.25


    [Recurso visitado 11 veces]
    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter


  • Naturaleza y Vida
    OAI: open archives initiativeTipo de documento: artículoColección Revistas UCM Colección: Portal de revistas científicas complutenses

    [Recurso visitado 6 veces]

    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter


  • On weak shape equivalences
    OAI: open archives initiativeTipo de documento: artículoColección E-prints Colección: Archivo institucional e-prints complutense
    • Título de publicación: Topology and its Applications
    • Autor: Alonso Mor髇, Manuel;Romero Ruiz del Portal, Francisco
    • Palabras clave: Homotopy; monomorphisms; epimorphisms; weak shape equivalence; shape category of uniformly pointed movable continua; monomorphisms and epimorphisms in categories
    • Materia: Matem醫icas
    • Identificador OAI: oai:www.ucm.es:15497
    • Tipo: Art韈ulo
    • Editorial: Elsevier Science
    • Departamento: Fac. de CC. Matem醫icas - Depto. de Geometr韆 y Topolog韆
    • ISSN: 0166-8641
    • CDU: 515.143

    [Recurso visitado 4 veces]

    Compártelo:
    • Facebook
    • Reporter MSN
    • Men閍me
    • Del.icio.us
    • Digg
    • Technorati
    • My Yahoo!
    • Mister Wong
    • Twitter



IMPRIMIR LISTADO

FILTROS:

     COLECCIONES


     RESULTADO EN


     TIPO DE RECURSO


MENÚ DE LA SEMANA


TÉRMINOS RELACIONADOS


RED SEM罭TICA


TE RECOMENDAMOS