Resumen: Let M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a
three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus gɥ1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32].
Palabras clave: Cyclic branched covering spaces, three manifolds, three-sphere, two manifolds
Descriptores: Textual criticism; Medieval Latin; Diplomatics; Documents; History
Resumen: A philological and diplomatic study of the bull documentation of Clemente IV, kept in the Cathedral Historical Archive in Cádiz.sculpture.; Estudio filológico
y diplomático de la documentación bubática de Clemente IV conservada en el Archivo Histórico Catedralicio de Cádiz.
Acceso desde: 01/01/2006
Materia secundaria: Historia antigua; Historia contemporánea; Historia medieval; Numismática
Resumen: Let M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a
three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus gɥ1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32].
Palabras clave: Cyclic branched covering spaces, three manifolds, three-sphere, two manifolds